1. 首页
  2. 人工智能

云知声李霄寒:人工智能芯片面临四大挑战

3 月 27 日,2019 云知声 AI 技术开放日(Open Day)首站在北京举办,云知声副总裁、芯片研发负责人李霄寒博士从AI 芯片设计的挑战、设计维度以及核心技术等方向,分享了云知声对于 AI 芯片行业和技术的看法。

过去的 2018 年被行业称为 AI 芯片的元年,传统与新秀纷纷拍马杀到,一时间烽烟四起。李霄寒认为,针对人工智能的芯片设计,面临着碎片化场景、冯o诺依曼内存墙、边缘侧应用的低功耗需求、安全需求四大挑战。在芯片设计上,需面向具体场景,基于端云互动的思想提供多模态处理的能力,在性能、功耗、面积上达到优异平衡,并兼顾连接和安全的需求。

他介绍到,解决冯o诺依曼内存墙这一行业共同难题,关键在于拉近计算单位和存储单位的距离,让它们尽可能接近。为此,云知声提出了异构计算系统架构设计、加速器近算存储结构,以及通用API函数到专用指令集的多重应对方案。

与此同时,通过技术攻坚,云知声推出的低功耗语音唤醒技术,以及面向机器视觉专用的低功耗microISP,可很好地适应边缘侧应用的低功耗需求。而定制的安全 IP 规划,则可满足安全性方面的要求。

李霄寒认为,IoT 结合 AI 化浪潮,需要全新的 AIoT 芯片,多模态 AI 芯片是关键一步。AI 与 IoT 的叠加要求传统解决方案朝五大方向转型:从通用架构-AI架构、从依赖硬件到软硬件一体、从PPA模式到垂直场景模式、交互从单模态转向多模态、设备从独立到协同。为此,云知声提出 Skills On Chip 概念,做出 DeepNet2.0 多模态神经网络处理器 IP,兼容多种神经网络。

发表评论

登录后才能评论